当前所在位置:首页 >> 研究队伍

姓名 代立东 性别:
职称 研究员 学历 理学博士
电话 0086-0851-85891424 传真: 0086-0851-85891749
Email: dailidong@vip.gyig.ac.cn 邮编: 550081
地址 贵阳市观山湖区林城西路99号
简历:

1997.09—2001.07 中国地质大学(武汉)本科学习

2001.09—2006.05 中科院地球化学研究博士研究生

2006.05—2008.01 中国科学院地球化学研究所,助理研究员

2008.02—2009.02 美国耶鲁大学地质与地球物理系,访问学者

2009.03—2010.09 中国科学地球化学研究所,副研究员

2010.10—2012.11 东京工业大学地球科学与行星学院,日本学术振兴会外国人特别研究员

2012.12—?2013.11 美国耶鲁大学地质与地球物理系,访问学者

2013.12—现在 中国科学院地球化学研究所研究员,博士生导师

2016.11—2017.02 美国纽约州立大学石溪分校矿物物理研究所,高级访问学者

2019.10—2020.08 美国耶鲁大学地球与行星科学学院,高级访问学者

研究方向:

1.同步辐射的X射线衍射和布里渊散射弹性波速测量;

2.多面顶压机和金刚石对顶砧上控制热力学条件下地球深部矿物岩石电学性质的原位测量;

3.材料物理学化学;

4.地球内部矿物物理化学.

承担科研项目情况:

1.国家自然科学基金面上项目“高温高压和不同体积分数磁铁矿掺杂下形变蛇纹石电导率及其地球物理学意义”(2021.01-2024.12, 资助号:42072055),在研;

2.国家自然科学基金面上项目“高温高压下不同压力、氧逸度、水含量、铁含量和碳含量的人工合成榴辉岩电导率的实验研究及地球物理学意义”(2018.01-2021.12, 资助号:41774099),在研;

3.中国科学院前沿科学重点研究项目“百万大气压金刚石压腔高压设备上矿物电学性质的原位实验测量” (2016.08-2020.12, 资助号:QYZDB-SSW-DQC009),在研;

4.国家自然科学基金面上项目“控制热力学下各向异性对含水的橄榄石及形变的橄榄岩电导率的实验研究” (2015.01-2018.12, 资助号:41474078),已结题;

5.中国科学院青年创新促进会专项基金 (2013.01-2016.12),已结题;

6.国家自然科学基金面上项目“下地幔及核幔边界方镁铁矿电学性质测量” (2012.01-2015.12, 资助号:41174079),已结题;

7.日本学术振兴会外国人研究员资助项目“世界同步光源国家实验室日本SPring-8的金刚石对顶砧上下地幔-核幔边界-地核典型矿物布里渊散射的弹性波速测量” (2010.10-2012.12, 资助号:P10334),已结题;

8.中国科学院知识创新重要方向项目 (青年人才类)“上地幔及地幔转换带中的水-电导率实验测量”(2010.01-2012.12, 资助号:KZCX2-YW-QN110),已结题;

9.国家自然科学基金面上项目“高温高压下上地幔及过渡带石榴子电学性质实验研究” (2010.01-2012.12, 资助号:40974051),已结题;

10.国家自然科学青年基金项目“高温高压下上地幔橄榄岩颗粒边界电导率实验测量” (2008.01-2010.12, 资助号:40704010),已结题

专家类别:
职务:
社会任职:

1.中国岩石力学与工程学会高温高压岩石力学专业委员会 (2020–);

2.中国地球物理学会构造物理化学专业委员会委员 (2019–);

3.国内刊物《高压物理学报》编委 (2019–);

4.中国矿物岩石地球化学学会实验矿物岩石地球化学专业委员会委员 (2017?);

5.中国科学院地球内部物质高温高压重点实验室副主任 (2017–)

6.中国科学院地球内部物质高温高压重点实验室学术委员会成员 (2014–);

7.中国科学院青年创新促进会会员 (2013);

8.日本学术振兴会 (JSPS) 会员 (2010–);

9.美国地球物理学会会员 (2008–)

获奖及荣誉:

1.中国科学院昆明分院“建功立业时代先锋”优秀个人 (2019);

2.贵州省省管专家(第八批)(2019);

3.贵州省省直机关优秀共产党员 (2019);

4.贵州省九三学社优秀社员 (2015);

5.贵州省青年联合会第十届委员会委员 (2015);

6.中国科学院青年创新促进会会员 (2013);

7.中国科学院地球化学研究所第二届研究生学术年会优秀导师奖 (2013);

8.中国地质学会地质青年科技奖最高奖-金锤奖 (2011);

9.日本学术振兴会学者奖 (2010);

10.中国科学院院长奖优秀奖 (2006);

11.中国科学院优秀毕业生奖 (2006)

代表论著:

第一作者及通讯作者:

61) Dai Lidong* and Karato Shun-ichiro. Electrical conductivity of Ti-bearing hydrous olivine aggregates at high temperature and high pressure. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020309, doi: https://doi.org/10.1029/2020JB020309.

60) Dai Lidong, Hu Haiying*, Jiang Jianjun, Sun Wenqing, Li Heping, Wang Mengqi, Vallianatos Filippos and Saltas Vassilios*. An overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone. Materials 2020, 13, 408, doi: 10.3390/ma13020408.

59) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Wang Mengqi. Electrical conductivity of clinopyroxene-NaCl-H2O system at high temperatures and pressures: Implications for high-conductivity anomalies in the deep crust and subduction zone. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019093, doi: https://doi.org/10.1029/2019JB019093.

58) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling, Zhang Xinyu and Liu Pengfei. High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells. Geoscience Frontiers, 2020, in press, doi: 10.1016/j.gsf.2020.05.017.

57) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling and Zhang Xinyu. The phase transition and dehydration in epsomite under high temperature and high pressure. Crystals, 2020, 10, 75, doi: 10.3390/cryst10020075.

56) Dai Lidong*, Pu Chang, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa. Review of Scientific Instruments, 2019, 90, 066103, doi: 10.1063/1.5093949.

55) Dai Lidong*, Hu Haiying*, Sun Wenqing, Li Heping, Liu Changcai and Wang Mengqi. Influence of high conductive magnetite impurity on the electrical conductivity of dry olivine aggregates at high temperature and high pressure. Minerals, 2019, 9, 44, doi: 10.3390/min9010044.

54) Hong Meiling, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Pu Chang. Structural phase transition and metallization of nanocrystalline rutile investigated by high-pressure Raman spectroscopy and electrical conductivity. Minerals, 2019, 9, 441, doi: 10.3390/min9070441.

53) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Evidences for phase transition and metallization in β-In2S3 at high pressure. Chemical Physics, 2019, 524: 63–69.

52) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Phase transition and metallization of orpiment by Raman spectroscopy, electrical conductivity and theoretical calculation under high pressure. Materials, 2019, 12, 784, doi: 10.3390/ma12050784.

51) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Yang Linfei, Pu Chang and Hong Meiling. Pressure-induced phase transitions for goethite investigated by Raman spectroscopy and electrical conductivity. High Pressure Research, 2019, 39: 106–116.

50) Pu Chang, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Pressure-induced phase transitions of ZnSe under different pressure environments. AIP Advances, 2019, 9, 025004, doi: https://doi.org/10.1063/1.5082209.

49) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying and Liu Changcai. Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications. Journal of Mineralogical and Petrological Sciences, 2019, 114: 87–98.

48) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Liu Changcai. Experimental study on the electrical properties of carbonaceous slate: A special natural rock with unusually high conductivity at high temperatures and pressures. High Temperatures-High Pressures, 2019, 48: 455–467.

47) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Liu Changcai and Wang Mengqi. Effect of temperature, pressure and chemical compositions on the electrical conductivity of schist: Implications for electrical structures under the Tibetan plateau. Materials, 2019, 12, 961, doi: 10.3390/ma12060961.

46) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Characterization of the pressure-induced phase transition of metallization for MoTe2 under different hydrostatic environments. AIP Advances, 2019, 9, 065104, doi: 10.1063/1.5097428

45) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Pressure-induced metallization in MoSe2 under different pressure conditions. RSC Advances, 2019, 9: 5794?5803.

44) Dai Lidong*, Liu K X, Li H P, Wu L, Hu H Y, Zhuang Y K, Yang L F, Pu C and Liu P F. Pressure-induced irreversible metallization with phase transitions of Sb2S3. Physical Review B, 2018, 97, 024103, doi: 10.1103/PhysRevB.97.024103.

43) Dai Lidong*, Sun W Q, Li H P, Hu H Y, Wu L and Jiang J J. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures. Solid Earth, 2018, 9: 233–245.

42) Dai Lidong*, Hu H Y, Li H P, Sun W Q and Jiang J J. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications for the mechanism of conduction. Chinese Physics B, 2018, 27, 028703, doi: 10.1088/1674-1056/27/2/028703.

41) Hu Haiying, Dai Lidong*, Li H P, Sun W Q and Li B S. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole and its implications for the high conductivity anomalies in subduction zones and continental crust. Earth and Planetary Science Letters, 2018, 498: 27–37.

40) Pu Chang, Dai Lidong*, Li H P, Hu H, Zhuang Y K, Liu K X, Yang L F and Hong M L. High–pressure electrical conductivity and Raman spectroscopic study of chalcanthite. Spectroscopy Letters, 2018, 51: 531–539.

39) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Liu Kaixiang, Pu Chang and Hong Meiling. Pressure-induced structural phase transition and dehydration for gypsum investigated by Raman spectroscopy and electrical conductivity. Chemical Physics Letters, 2018, 706: 151–157.

38) Zhuang Yukai, Dai Lidong*, Li H P, Hu H Y, Liu K X, Yang L F, Pu C, Hong M L and Liu P F. Deviatoric stresses promoted metallization in rhenium disulfide. Journal of Physics D: Applied Physics, 2018, Journal of Physics D: Applied Physics, 51, 165101, doi: https://doi.org/10.1088/1361-6463/aab5a7.

37) Zhuang Yukai, Dai Lidong*, Li H P, Hu H Y, Liu K X, Yang L F, Pu C and Hong M L. Pressure induced reversible metallization and phase transition in Zinc Telluride. Modern Physics Letters B, 2018, 34, 1850342, doi: 10.1142/S0217984918503426.

36) Liu Kaixiang, Dai Lidong*, Li H P, Hu H Y, Wu L, Zhuang Y K, Pu C and Yang L F. Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure. Physics and Chemistry of Minerals, 2018, 45: 85–92.

35) Dai Lidong, Zhuang Y K, Li H P, Wu L, Hu H Y, Liu K X, Yang L F and Pu C. Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. Journal of Materials Chemistry C, 2017, 5: 12157–12162.

34) Hu Haiying, Dai Lidong*, Li H P, Hui K S and Sun W Q. Influence of dehydration on the electrical conductivity of epidote and implications for high conductivity anomalies in subduction zones. Journal of Geophysical Research: Solid Earth, 2017, 122: 2751–2762.

33) Zhuang Yukai, Dai Lidong*, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C. Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Applied Physics Letters, 2017, 110, 122103, doi: 10.1063/1.4979143.

32) Sun Wenqing, Dai Lidong*, Li H P, Hu H Y, Wu L and Jiang J J. The electrical conductivity of mudstone before and after dehydration at high temperatures and pressures. American Mineralogist, 2017, 102: 2450–2456.

31) Sun Wenqing, Dai Lidong*, Li H P, Hu H Y, Jiang J J and Hui K S. Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures. Mineralogy and Petrology, 2017, 111: 853–863.

30) Wu Lei, Dai Lidong*, Li H P, Hu H Y, Zhuang Y K and Liu K X. Anomalous phase transition of Bi-doped Zn2GeO4 investigated by electrical conductivity and Raman spectroscopy under high pressure. Journal of Applied Physics, 2017, 121, 125901, doi: 10.1063/1.4979311.

29) Hui Keshi, Dai Lidong*, Li H P, Hu H Y, Jiang J J, Sun W Q and Zhang H. Experimental study on the electrical conductivity of pyroxene andesite at high temperature and high pressure. Pure and Applied Geophysics, 2017, 174: 1033-1041.

28) Dai Lidong, Hu H Y, Li H P, Wu L, Hui K S, Jiang J J and Sun W Q. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochemistry, Geophysics, Geosystems, 2016, 17: 2394-2407.

27) Dai Lidong, Wu L, Li H P, Hu H Y, Zhuang Y K and Liu K X. Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3. Journal of Physics: Condensed Matter, 2016, 28, 475501, doi: 10.1088/0953-8984/28/47/475501.

26) Dai Lidong, Wu L, Li H P, Hu H Y, Zhuang Y K & Liu K X. Pressure-induced phase-transition and improvement of the micro dielectric properties in yttrium-doped SrZrO3. Europhysics Letters, 2016, 114, 56003, doi: 10.1209/0295-5075/114/56003.

25) Wu Lei, Dai Lidong*, Li H P, Zhuang Y K, Liu K X. Pressure-induced improvement of grain boundary properties in Y-doped BaZrO3. Journal of Physics D: Applied Physics, 2016, 49, 345102, doi: 10.1088/0022-3727/49/34/345102.

24) Dai Lidong, Hu H Y, Li H P, Hui K S, Jiang J J, Li J and Sun W Q. Electrical conductivity of gabbro: the effects of temperature, pressure and oxygen fugacity. European Journal of Mineralogy, 2015, 27: 215-224.

23) Dai Lidong, Jiang J J, Li H P, Hu H Y and Hui K S. Electrical conductivity of hydrous natural basalt at high temperatures and high pressures. Journal of Applied Geophysics, 2015, 112: 290-297.

22) Hui Keshi, Zhang H, Li H P, Dai Lidong*, Hu H Y, Jiang J J and Sun W Q. Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: evidence of grain boundary transport. Solid Earth, 2015, 6: 1037-1043.

21) Dai Lidong and Karato S. Reply to comment on “High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine” by Dai and Karato [Earth Planet. Sci. Lett. 408 (2014) 79–86]. Earth and Planetary Science Letters, 2015, 427: 300-302.

20) Dai Lidong and Karato S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth and Planetary Science Letters, 2014, 408: 79-86.

19) Dai Lidong, Hu H Y, Li H P, Jiang J J and Hui K S. Effects of temperature, pressure and chemical composition on the electrical conductivity of granite and its geophysical implications. American Mineralogist, 2014, 99: 1420-1428.

18) Dai Lidong and Karato S. Influence of FeO and H on the electrical conductivity of olivine. Physics of the Earth and Planetary Interiors, 2014, 237: 73-79.

17) Dai Lidong and Karato S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Physics of the Earth and Planetary Interiors, 2014, 232: 51-56.

16) Dai Lidong and Karato S. Influence of oxygen fugacity on the electrical conductivity of olivine under hydrous conditions: Implications for the mechanism of conduction. Physics of the Earth and Planetary Interiors, 2014, 232: 57-60.

15) Dai Lidong, Li H P, Hu H Y, Jiang J J, Hui K S and Shan S M. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics, 2013, 608: 1086-1093.

14) Dai Lidong, Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y and Hirao N. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases 73 GPa determined by Brillouin scattering method. Physics and Chemistry of Minerals, 2013, 40: 195-201.

13) Dai Lidong, Li H P, Hu H Y, Shan S M, Jiang J J and Hui K S. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contributions to Mineralogy and Petrology, 2012, 163 (4): 689-700.

12) Dai Lidong, Li H P, Hu H Y and Shan S M. In-situ control of oxygen fugacity for laboratory measurements of electrical conductivity of minerals and rocks in multi-anvil press. Chinese Physics B, 2011, 20: 049101, doi: 10.1088/1674-1056/20/4/049101.

11) Dai Lidong, Li H P, Li C H, Hu H Y and Shan S M. The Electrical conductivity of dry polycrystalline olivine compacts at high temperatures and pressures. Mineralogical Magazine, 2010, 74 (5): 849-857.

10) Dai Lidong and Karato S. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth and Planetary Science Letters, 2009, 287: 277-283.

9) Dai Lidong and Karato S. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Physics of the Earth and Planetary Interiors, 2009, 176: 83-88.

8) Dai Lidong and Karato S. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proceedings of the Japan Academy (Series B), 2009, 85: 466-475.

7) Dai Lidong, Li H P, Hu H Y and Shan S M. Novel technique to control oxygen fugacity during high-pressure measurements of grain boundary conductivities of rocks. Review of Scientific Instruments, 2009, 80: 033903, doi: 10.1063/1.3097882.

6) Dai Lidong, Li H P, Hu H Y and Shan S M. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. Journal of Geophysical Research-Solid Earth, 2008, 113: B12211, doi: 10.1029/2008JB005820.

5) Dai Lidong, Li H P, Deng H M, Liu C Q, Su G L, Shan S M, Zhang L and Wang R P. In situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure. Journal of Physics and Chemistry of Solids, 2008, 69 (1): 101-110.

4) Dai Lidong, Li H P, Liu C Q, Su G L and Shan S M. Experimental measurement on the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities. High Pressure Research, 2006, 26 (3): 193-202.

3) Dai Lidong, Li H P, Liu C Q, Cui T D, Shan S M, Yang C J, Liu Q Y and Deng H M. Experimental measurement on the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities. Progress in Natural Science, 2006, 16 (4): 387-393.

2) Dai Lidong, Li H P, Liu C Q, Shan S M, Cui T D and Su G L. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities. Acta Geological Sinica-English Edition, 2005, 79 (6): 803-809.

1) Dai Lidong, Li H P, Liu C Q, Su G L and Cui T D. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure. Acta Petrological Sinica, 2005, 21 (6): 1737-1742.

 

非第一作者及通讯作者:

10) Gabriel D. Gwanmesia, Matthew L. Whitaker, Dai Lidong, Alwin James, Haiyan Chen, Richard S. Triplett and Nao Cai. The elastic properties of β-Mg2SiO4 containing 0.73 wt.% of H2O to 10 GPa and 600 K by ultrasonic interferometry with synchrotron X-radiation. Minerals, 2020, 10, 209, doi: 10.3390/min10030209.

9) Liang Wen, Li Z M, Yin Y, Li R, Chen L, He Y, Dong H N, Dai Lidong and Li H P. Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3). Physics and Chemistry of Minerals, 2018, 45: 423–434.

8) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y and Zhao C S. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa). AIP Advances, 2016, 6: 035214, doi: 10.1063/1.4944832.

7) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y and Zhao C S. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physical Sinica, 2015, 64 (14): 149101.

6) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y, Wang Y and Zhao C S. Review on application of optical scattering spectroscopy for elastic wave velocity study on materials in Earth’s interior. Spectroscopy and Spectral Analysis, 2015, 35 (9): 2588-2595.

5) Hu Haiying, Dai Lidong, Li H P, Hui K S and Li J. Temperature and pressure dependence of electrical conductivity in synthetic anorthite. Solid State Ionics, 2015, 276: 136-141.

4) Hu Haiying, Dai Lidong, Li H P, Jiang J J and Hui K S. Electrical conductivity of K-feldspar at high temperature and high pressure. Mineralogy and Petrology, 2014, 108: 609-618.

3) Hu Haiying, Li H P, Dai Lidong, Shan S M and Zhu C M. Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Physics and Chemistry of Minerals, 2013, 40: 51-62.

2) Hu Haiying, Li H P, Dai Lidong, Shan S M and Zhu C M. Electrical conductivity of albite at high temperatures and high pressures. American Mineralogist, 2011, 96: 1821-1827.

1) Karato Shun-ichiro and Dai Lidong. Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Physics of the Earth and Planetary Interiors, 2009, 174: 19-21.